ABSTRACT: There is now a large body of data that indicates that the CB2 cannabinoid receptor type 2 (CB2) is linked to a variety of immune functional events. This functional relevance appears to be most salient in the course of inflammation, a process during which there is an increased number of receptors that are available for activation. Studies aimed at elucidating signal ... Continue Reading
Alzheimer’s Disease
STUDY: An exploration of the potential mechanisms and translational potential of five medicinal plants for applications in Alzheimer’s disease
ABSTRACT: Alzheimer’s disease (AD) is the most common type of dementia, and represents a vast worldwide socio-economic burden, and in the absence of a current cure, effective therapeutic strategies are still needed. Cholinergic and cerebral blood flow deficits, excessive levels of oxidative stress, neuroinflammation and glutamate excitatory mechanisms are all believed to ... Continue Reading
STUDY: The influence of cannabinoids on generic traits of neurodegeneration
ABSTRACT: In an increasingly ageing population, the incidence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are rising. While the aetiologies of these disorders are different, a number of common mechanisms that underlie their neurodegenerative components have been elucidated; namely neuroinflammation, excitotoxicity, ... Continue Reading
STUDY: Alzheimer’s disease; taking the edge off with cannabinoids?
ABSTRACT: Alzheimer's disease is an age-related neurodegenerative condition associated with cognitive decline. The pathological hallmarks of the disease are the deposition of β-amyloid protein and hyperphosphorylation of tau, which evoke neuronal cell death and impair inter-neuronal communication. The disease is also associated with neuroinflammation, excitotoxicity and ... Continue Reading
STUDY: Cannabidiol Reduces Aβ-Induced Neuroinflammation and Promotes Hippocampal Neurogenesis through PPARγ Involvement
ABSTRACT: Peroxisome proliferator-activated receptor-γ (PPARγ) has been reported to be involved in the etiology of pathological features of Alzheimer's disease (AD). Cannabidiol (CBD), a Cannabis derivative devoid of psychomimetic effects, has attracted much attention because of its promising neuroprotective properties in rat AD models, even though the mechanism responsible ... Continue Reading